- Indicateurs & Réserves Naturelles -

1) Contexte:

INDICATEURS & BIODIVERSITÉ :

Erosion généralisée de la biodiversité,

(BOESAT. 2000)

- Suivre la biodiversité
- -Évaluer l'efficacité des espaces protégés

DÉFINITION D'UN INDICATEUR:

« Permet de mesurer une situation ou une tendance, de façon relativement objective, à un instant donné, ou dans le temps et/ou l'espace = résumé d'informations complexes »

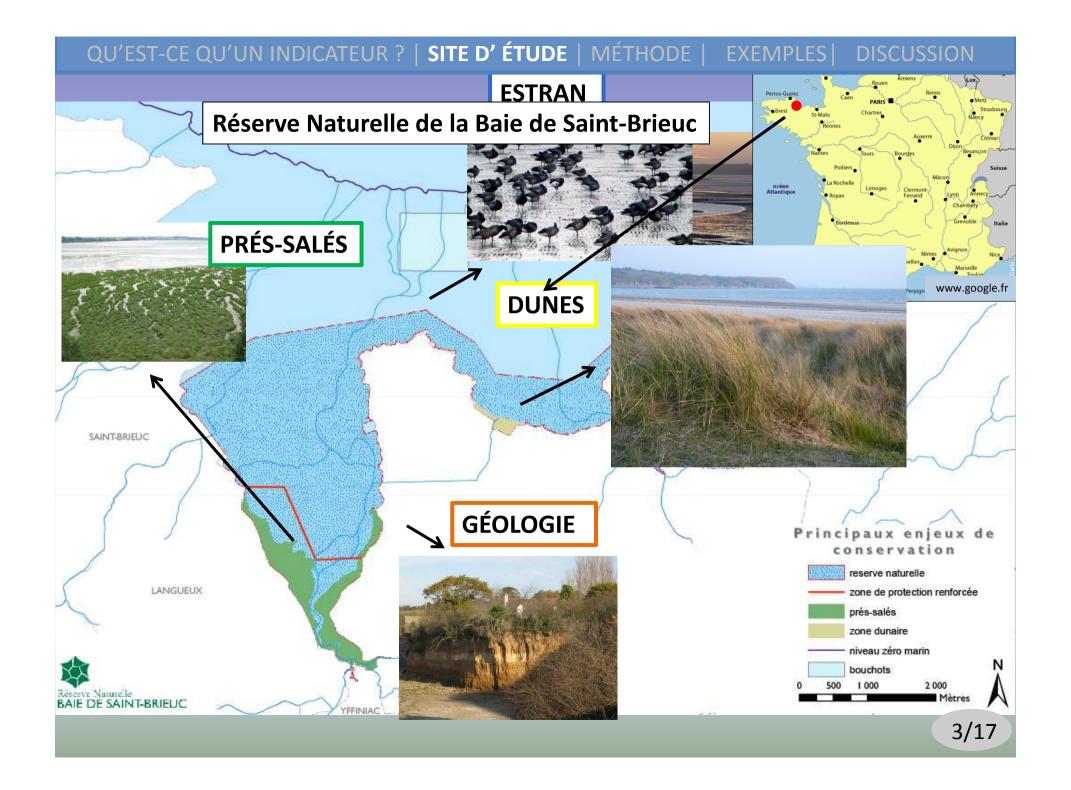
- État de la biodiversité ?
- Pressions?
- Efficacité des politiques de conservation?

Facile à utiliser et répond à la question posée

- Surface forestière : -Indicateur de menaces
 - -Indicateur de restauration (plantations)
 - -Indicateur de séquestration de carbone
 - -Indicateur de couverture du sol, ...
 - Améliorer la gestion = outils d'aide à la décision Vision synthétique et opérationnelle = état de référence **Evaluation**

http://inventaire-forestier.ign.fr

- Améliorer la lisibilité des résultats = outil didactique


3) Réserve naturelle de Saint-Brieuc:

Mise en place d'indicateurs pour évaluer l'efficacité de la gestion

Site pilote!

<u>1ère étape</u>: - Définition des enjeux

- Définition des objectifs à long terme et à court terme
- -Définition du niveau d'exigence de la réserve
- Définition des facteurs d'influence

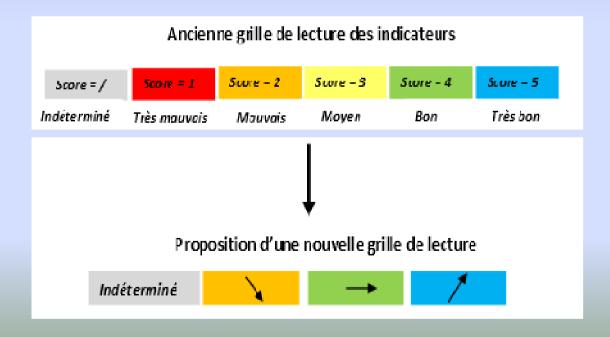
2ère étape : Objectif à long terme

1 ou plusieurs indicateurs

Indicateurs d'état de conservation

Objectifs à long terme OLT

Indicateurs de <u>résultats</u>



Objectifs du plan OdP

■ Un indicateur = 1 ou plusieurs variables

3ème étape : Seuil de référence, (= niveau d'exigence, spécifique à chaque réserve)

=> grille de lecture : note allant de 1 à 5 -> note finale de l'indicateur.

4ème étape:

☐ LE TABLEAU DE BORD

C'est ce qui alerte en « temps réel »

OLT + indicateurs d'état de conservation

Patrimoine écologique: habitats, faune, flore

Cantinuario de Anticulario de Cartinuario de Cart

Indicateurs d'état : voyants lumineux

Si allumés → action

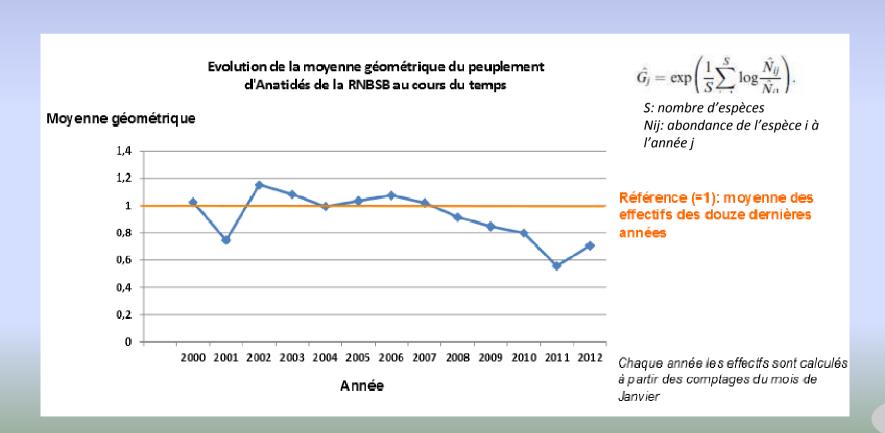
Si rouge → action

FINALITÉ : PROTECTION DES MILIEUX ET DU PATRIMOINE NATUREL, PROTECTION DE LA BIODIVERSITÉ (REMARC

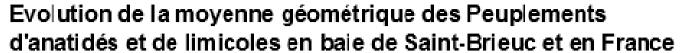
ENJEU: UN ACCUEIL IMPORTANT DES OISEAUX EN HIVERNAGE ET EN HALTE MIGRATOIRE DANS L'ESTRAN

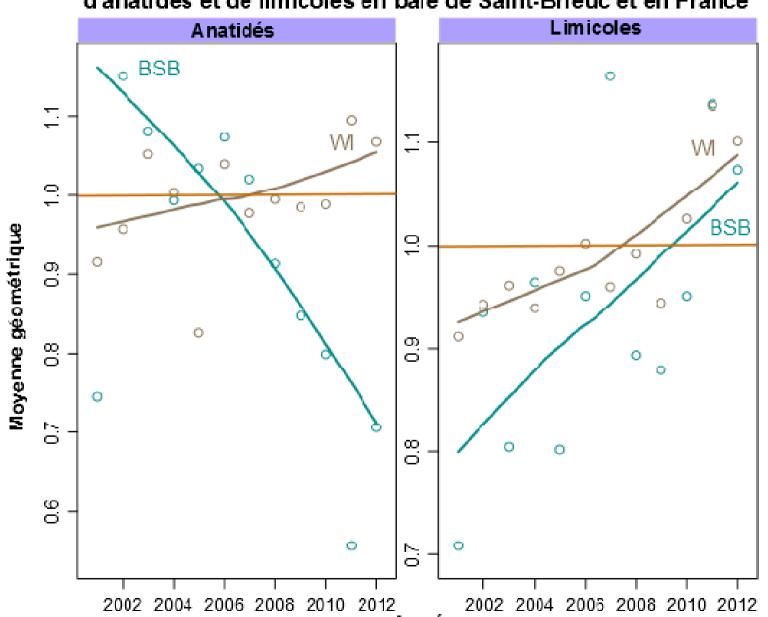
Le fond de la Baie de St-Brieuc est une halte migratoire d'importance internationale. Il atteint un niveau d'intérêt national voir international dans l'hivernage des limicoles et

OLT pour la RN [Finalités et sous- finalités des PNM]	Niveau d'exigence pour atteindre l'OLT	Indicateurs d'état, de pression, d'impact	METRIQUES
	>Le maintien de la diversité des espèces de limicoles ayant de forts effectifs (> seuil nationaux ou pas) > L'atteinte dans la réserve naturelle des seuils nationaux pour 6 espèces de limicoles hivernants	Limicoles côtiers	Structuration du peuplement de limicoles Contribution et tendance de l'Huitrier pie Contribution et tendance du Bécasseau maubèche
I. Maintenir les effectifs d'anatidés et	: Huitrier pie, Courlis cendré, Pluvier argenté, Barge rousse, Bécasseau maubèche, Bécasseau sanderling		Contribution et tendance du Bécasseau sanderling Contribution et tendance de la Barge rousse Contribution et tendance du Courlis cendré
de limicoles en hivernage et en halte migratoire au vu des effectifs nationaux	> Le maintien de la diversité des espèces d'anatidés ayant de forts effectifs (> seuil nationaux ou pas) > L'hivernage des anatidés atteint dans la	Anatidés	Structuration du peuplement d'Anatidés (Calculés sur les espèces dominantes. Moyenne géométrique des effectifs et équitabilité. On défini une gamme normale de variabilité au vu des données antérieures) Tendance due la Bernache cravant
	réserve naturelle des seuils nationaux pour 3 espèces : : Bernache cravant, Canard siffleur et Macreuse noire		Tendance du Canard siffleur Tendance du Canard pilet Tendance de la Macreuse noire

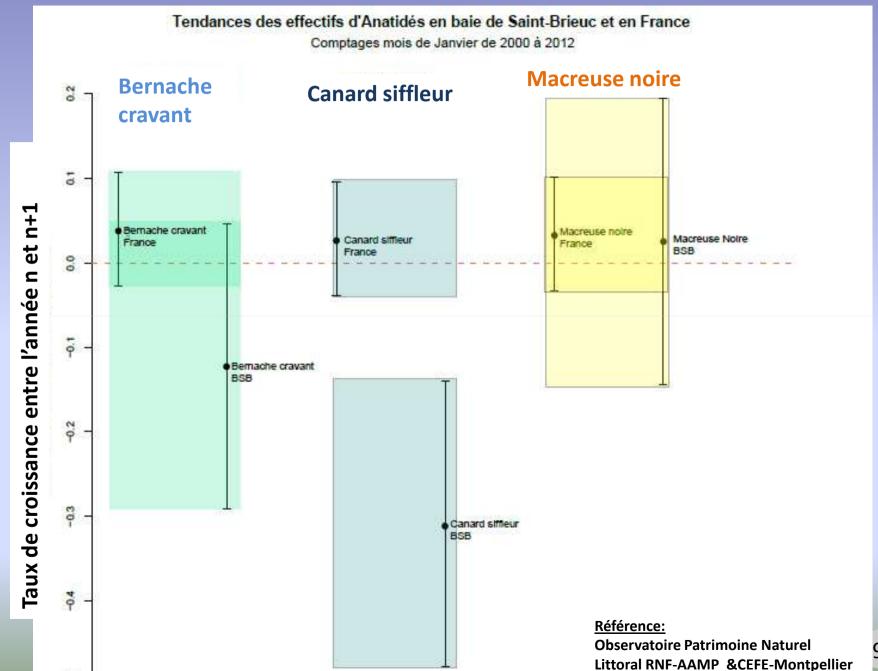

Rapportage national

⇒ Maintenir les effectifs de limicoles et d'anatidés en hivernage et en halte migratoire (OLT)

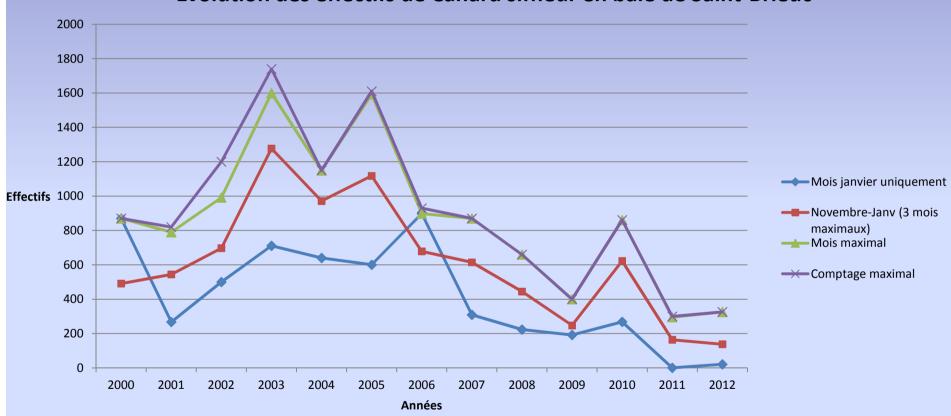

Indicateurs d'état de conservation « Anatidés » + « Limicoles »


Différentes pistes suivies ...

1. « moyenne géométrique des effectifs relatifs du peuplement d'Anatidés » ?

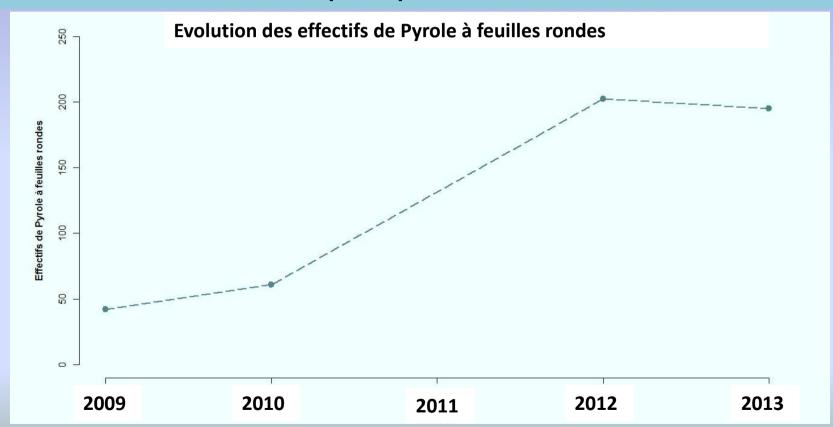


Comparaison avec la tendance nationale



2. Modélisation de la tendance ?

Mais quels effectifs utiliser?


Evolution des effectifs de Canard siffleur en baie de Saint-Brieuc

⇒ Maintenir le fort intérêt patrimonial et le bon état de conservation des dunes (OLT)

Indicateur d'état de conservation « Flores patrimoniales »

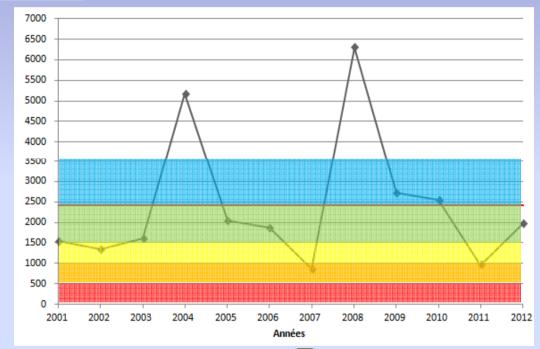
1. « Evolution des effectifs d'espèces patrimoniales » ?

- ⇒ Maintenir les effectifs de limicoles et d'anatidés en hivernage et en halte migratoire (OLT)
 - Garantir une gestion durable de la ressource alimentaire des limicoles côtiers (gisement de coques en particulier)(OdP)
- → Indicateur de <u>résultats</u> : les actions visant à gérer la pêche professionnelle permettent-elles de maintenir le stock de bivalves au cours du temps ?

Indicateur « ressource alimentaire avifaune » : - variable : évolution du stock total de bivalves au cours du temps

Réserve Naturelle de Saint-Brieuc

Coques (Cerastoderma edule)


Indicateur « ressource alimentaire avifaune »: -variable: évolution du stock total de coques

Evolution du stock de coques au cours du temps

Stock de coques (*10⁶) (Nombre d'individus/an)

- Stock très dynamique (écart-type = 1666.10⁶)
- Seuil de référence: moyenne de ces 12 dernières années = 2411.10⁶
- Grille de lecture fictive :

0-500	Très mauvais
500-1000	Mauvais
1000-2000	Moyen
2000-3000	Bon
>3000	Très bon

En 2012:

13/17

les actions visant à gérer la pêche professionnelle permettent-elles de maintenir le stock de bivalves au cours du temps ?

<u>Limites</u>:

- ⇒ <u>Très</u> <u>très</u> complexe
- **⇒** Chronophage
- **⇒** Réducteur

Avantages: Plan gestion + Tableau Bord

- ⇒ Recentre les enjeux/priorités. Vraie évaluation
- **⇔ Gestion continue** : Gestion adaptative
- ⇒ Simplification du rapportage => tableau
- ⇒Souligne facteurs externes qui influencent les résultats de la gestion
- ⇒Sécurisation des données
- ⇒Rapportage régional/national-> comparaison des données entre RN
- **⇒**Communication

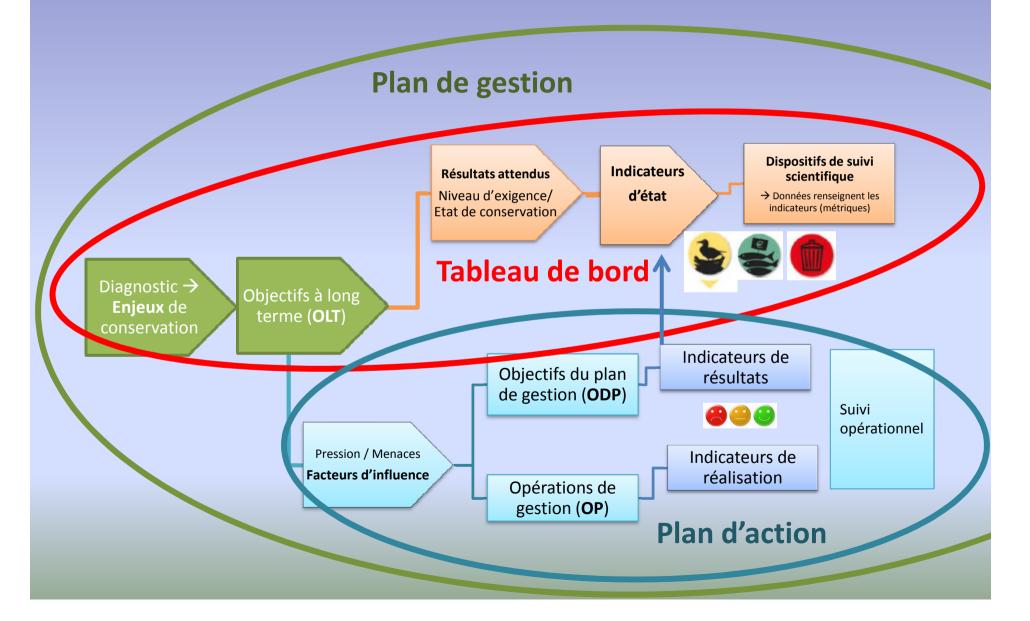
P-value pour la Réserve Naturelle de Saint Brieuc :

- **⇒** Voir les lacunes de connaissances
- ⇒ Prioriser les suivis au sein de la réserve
- ⇒ Affiner les objectifs/exigences : définition du bon état de conservation
- **⇒** Renforcer le réseau de gestionnaires

L'évaluation de l'efficacité de la gestion des espaces protégés est indispensable

- Début du travail
- Projet de grande envergure -> confrontation à la réalité
- Sécurisation des données!

Les indicateurs doivent animer le débat et non pas le remplacer !



L'articulation avec le plan de gestion

« MOYENNE GEOMETRIQUE des abondances relatives»

Journal of Applied Ecology

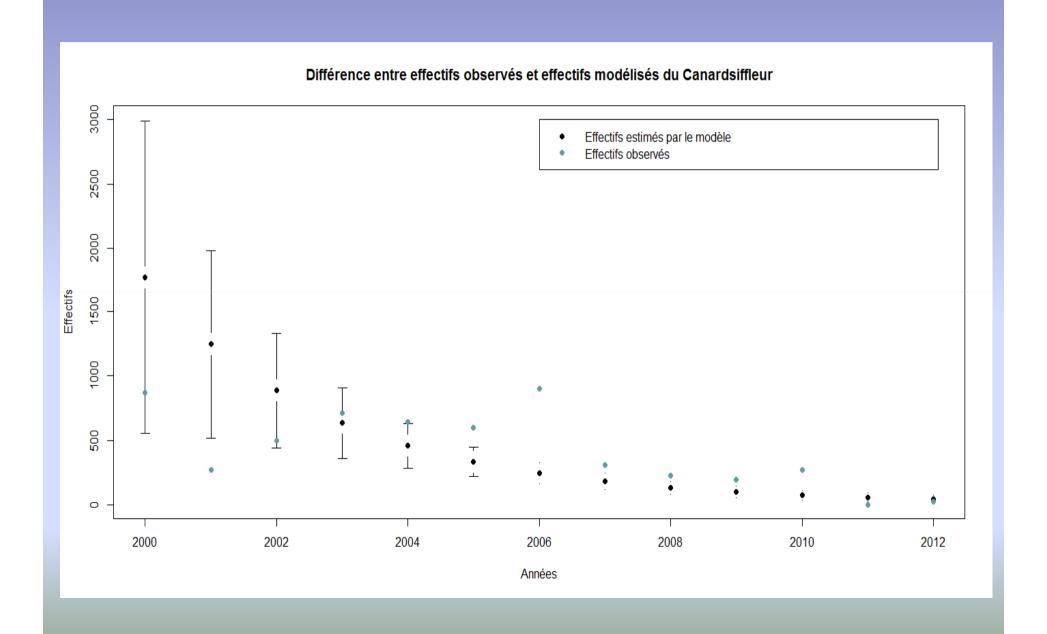
Journal of Applied Ecology 2013, 50, 190-198

doi: 10.1111/1365-2664.12026

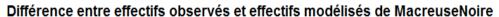
Fine-tuning the assessment of large-scale temporal trends in biodiversity using the example of British breeding birds

Angelika C. Studeny^{1,2*}, Stephen T. Buckland¹, Philip J. Harrison¹, Janine B. Illian¹, Anne E. Magurran³ and Stuart E. Newson⁴

Diversity measures


The existing UK WBI is based on a geometric mean of relative abundances. Given a list of S species, we calculate this geometric mean from the estimated abundances \hat{N}_{ij} for each species i in each year j as

$$\hat{G}_j = \exp\left(\frac{1}{S}\sum_{i=1}^{S}\log\frac{\hat{N}_{ij}}{\hat{N}_{i1}}\right).$$


The geometric mean meets many of the requirements of a headline indicator (Buckland et al. 2005; Loh et al. 2005) and has been adopted by policy makers for these reasons. It summarizes species-specific trends in abundance as well as evenness (Buckland et al. 2011b) as it gives equal weight to all species in the sense that rarer species contribute as much to the sum as more common ones. Because of this, it is sensitive to fluctuations in abundance of rare species that can increase its variance.

				2002	2222	2024	2225	2005	2007	2000	2222	2040	204
	Effectifs de ref (2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	201
Bernache crava	2936	3750	4503	3736	2393	2850	3272	3745	4335	3289	2400	2782	
Tadorne de Bel	174	161	200	258	112	80	140	180	204	114	326	138	<u> </u>
Canard colvert	347	300	400	300	380	260	326	469	350	317	273	276	
Canard pilet	160	200	137	240	192	250	200	160	159	104	100	93	
Canard siffleur	423	870	268	500	711	640	601	898	309	224	192	269	
Macreuse noire	574	305	9	1378	1447	660	610	403	597	718	170	118	
Log(Ni/Ntot)	0	0,1062126	0,1856833	0,1045882	-0,088876	-0,012974	0,0469947	0,1056332	0,1691705	0,0492452	-0,087607	-0,02354	-0,70
	0	-0,033147	0,0610571	0,1716468	-0,190755	-0,336883	-0,093845	0,0152996	0,0696573	-0,184977	0,2732447	-0,10167	-0,01
	0	-0,06263	0,0623085	-0,06263	0,0400322	-0,124778	-0,026534	0,1314214	0,0043166	-0,039378	-0,103589	-0,09963	0,186
	0	0,0979552	-0,067942	0,1771365	0,0802265	0,1948653	0,0968682	0,0010452	-0,001678	-0,188134	-0,203075	-0,236933	-0,10
	0	0,312942	-0,199253	0,0723928	0,2252924	0,1796027	0,1519358	0,3266991	-0,136619	-0,2773	-0,343276	-0,197633	-2,62
	0	-0,274971	-1,805028	0,3799786	0,4011979	0,0602733	0,0260592	-0,154325	0,0167037	0,0965513	-0,528822	-0,687389	-0,24
	LOG(B2/\$B2)												
		a											
		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	
Moyenne géo	1	1,02469361	0,74537901	1,1508707	1,08096376	0,99337314	1,03415002	1,07354071	1,02046521	0,91332327	0,84745236	0,79894298	0,5566
	EXP((1/6)*SOMM	1E(B9:B14))											

« STATISTIQUES BAYESIENNES»

« STATISTIQUES BAYESIENNES»

Sélection des espèces dont l'effectif est > 1% de l'effectif national

Anatidés														
Mois de jar	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	
Bernache ci	3750	4503	3736	2393	2850	3272	3745	4335	3289	2400	2782	585	534	
Canard cole	300	400	300	380	260	326	469	350	317	273	276	533	322	
Canard pile	200	137	240	192	250	200	160	159	104	100	93	124	118	
Canard siff	870	268	500	711	640	601	898	309	224	192	269	1	21	
Macreuse n	305	9	1378	1447	660	610	403	597	718	170	118	327	727	
Tadorne de	161	200	258	112	80	140	180	204	114	326	138	166	181	
Contributio	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	
Bernache ci	3,86	5,61	3,21	2,51	3,17	31,12	2,49	4,97	2,78	1,79	2,70	0,50	0,42	
Canard cole	0,16	0,18	0,12	0,13	0,10	0,12	0,16	0,13	0,11	0,03	0,03	0,17	0,11	
Canard pile	1,52	0,83	1,75	0,73	1,49	1,34	1,13	1,11	0,95	1,14	0,76	0,73	0,66	
Canard siff	2,55	0,65	1,25	1,41	1,45	1,30	1,65	0,68	0,46	0,44	0,51	0,00	0,05	
Macreuse n	1,58	0,07	8,02	5,11	2,06	3,10	1,47	2,67	2,74	0,78	0,72	1,32	1,97	
	1													

EffectifsWI	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Bernache ci	97236	80240	116538	95360	90040	10514	150125	87156	118223	134016	102840	116275	127906
Canard cole	186124	220556	259 498	285324	248491	263548	284274	267714	275857	294283	312216	316308	300156
Canard pile	13131	16542	13676	26331	16749	14866	14108	14335	10856	8780	12118	16911	17776
Canard siff	34062	40968	39983	50262	44058	46230	54468	45203	48664	43717	52796	77865	38237
Macreuse n	19 283	12834	17 178	28 301	31 992	19703	27357	22321	26178	21750	16292	24780	36940
Tadorne de	44921	49125	49484	50704	50980	48662	48705	55500	52784	62963	65252	74952	65488

Sélection des espèces dominantes: structure peuplements de limicoles

Limicoles:

Limicoles:										
JanvierBSA	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Barge à queue noire	0	14	5	11	4	4	7	10	4	8
Barge rousse	473	790	500	150	480	840	516	455	481	734
Bécasseau maubèche	5 000	3 000	2 000	700	2 340	3 100	3 150	3 200	1 500	3 420
Bécasseau minute	0	0	0	0	1	0	0	0	0	0
Bécasseau sanderling	18	17	78	64	195	400	240	122	234	260
Bécasseau variable	4 500	870	3 000	1 700	1 700	2 700	879	300	1 355	1 850
Bécasseau violet	0	2	0	0	0	0	0	0	0	0
Chevalier aboyeur	0	0	0	1	0	0	0	0	0	0
Chevalier arlequin	1	0	1	0	0	0	0	0	1	0
Chevalier combattant	30	32	46	20	7	10	4	0	0	4
Chevalier culblanc	3	2	1	2	3	4	0	2	1	2
Chevalier gambette	30	11	54	62	36	33	51	54	57	94
Chevalier guignette	1	3	2	1	1	0	0	1	0	1
Courlis cendré	420	385	760	650	476	813	505	666	281	1 062
Grand Gravelot	65	60	58	30	69	72	80	69	49	98
Gravelot à collier interrompu	0	1	0	0	1	1	0	0	0	0
Huîtrier pie	3 006	2 030	2 330	2 050	3 034	2 800	3 339	2 468	2 370	2 967
Pluvier argenté	232	210	225	320	120	282	245	266	79	250
Tournepierre à collier	79	46	99	61	200	130	72	20	255	160

Références:

 BOESAT. 2000. BOARD ON ENVIRONMENTAL STUDIES AND TOXICOLOGY. Global change ecosystem research.

Convention sur la diversité biologique Indicateurs

Introduction, Key Concepts and Definitions

How are indicators used?

Biodiversity indicators can be used to:

- Measure the progress and success of policies, including in reporting for national strategies and international conventions
- Support decision-making and adaptive management to achieve objectives and targets
- · Act as an early warning system to detect problems
- · Raise awareness about an issue
- Provide an important interface between policy and biodiversityrelated science, to help simplify and communicate often complex issues

l'objectif Code de Producteurs de données coefficient de pondération l'indicateur Code de 101 Pas de temps (score = 5) très bon **EXEMPLE TYPE DE FICHE INDICATEUR** (score = 3) moyen (score = 2) La valeur de l'indicateur est obtenue à partir de la moyenne pondérée de chaque métrique mauvais très mauvais (score = 1) À chaque valeur de métrique correspond un score prédéfini indéterminé L'indicateur est établi à partir des métriques suivantes Définition CONTEXTE DANS LEQUEL S'INSCRIT L'INDICATEUR Sources de variabilité de l'indicateur Autres indicateurs du plan de gestion à COMPOSITION DE L'INDICATEUR #- ANALYSE DE L'INDICATEUR OBJET DE L'INDICATEUR Objectif à long terme Nom de l'indicateur GRILLE DE LECTURE Objectif du plan INDICATEUR Prospective considérer Métrique Indicateur Métrique Chapitre